An integrative modeling approach to elucidate suction-feeding performance.
نویسندگان
چکیده
Research on suction-feeding performance has mostly focused on measuring individual underlying components such as suction pressure, flow velocity, ram or the effects of suction-induced forces on prey movement during feeding. Although this body of work has advanced our understanding of aquatic feeding, no consensus has yet emerged on how to combine all of these variables to predict prey-capture performance. Here, we treated the aquatic predator-prey encounter as a hydrodynamic interaction between a solid particle (representing the prey) and the unsteady suction flows around it, to integrate the effects of morphology, physiology, skull kinematics, ram and fluid mechanics on suction-feeding performance. We developed the suction-induced force-field (SIFF) model to study suction-feeding performance in 18 species of centrarchid fishes, and asked what morphological and functional traits underlie the evolution of feeding performance on three types of prey. Performance gradients obtained using SIFF revealed that different trait combinations contribute to the ability to feed on attached, evasive and (strain-sensitive) zooplanktonic prey because these prey types impose different challenges on the predator. The low overlap in the importance of different traits in determining performance also indicated that the evolution of suction-feeding ability along different ecological axes is largely unconstrained. SIFF also yielded estimates of feeding ability that performed better than kinematic traits in explaining natural patterns of prey use. When compared with principal components describing variation in the kinematics of suction-feeding events, SIFF output explained significantly more variation in centrarchid diets, suggesting that the inclusion of more mechanistic hydrodynamic models holds promise for gaining insight into the evolution of aquatic feeding performance.
منابع مشابه
Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes.
Suction feeding is pervasive among aquatic vertebrates, and our understanding of the functional morphology and biomechanics of suction feeding has recently been advanced by combining experimental and modeling approaches. Key advances include the visualization of the patterns of flow in front of the mouth of a feeding fish, the measurement of pressure inside their mouth cavity, and the employmen...
متن کاملOrigins, Innovations, and Diversification of Suction Feeding in Vertebrates.
We review the origins, prominent innovations, and major patterns of diversification in suction feeding by vertebrates. Non-vertebrate chordates and larval lamprey suspension-feed by capturing small particles in pharyngeal mucous. In most of these lineages the gentle flows that transport particles are generated by buccal cilia, although larval lamprey and thaliacean urochordates have independent...
متن کاملSuction feeding mechanics, performance, and diversity in fishes.
Despite almost 50 years of research on the functional morphology and biomechanics of suction feeding, no consensus has emerged on how to characterize suction-feeding performance, or its morphological basis. We argue that this lack of unity in the literature is due to an unusually indirect and complex linkage between the muscle contractions that power suction feeding, the skeletal movements that...
متن کاملThe integration of locomotion and prey capture in vertebrates: Morphology, behavior, and performance.
For most vertebrates, locomotion is a fundamental component of prey capture. Despite this ubiquitous link, few studies have quantified the integration of these complex systems. Several variables related to locomotor performance, including maximum speed, acceleration, deceleration, maneuverability, accuracy, and approach stability, likely influence feeding performance in vertebrates. The relativ...
متن کاملA Solution Strategy to Include the Opening of the Opercular Slits in Moving-Mesh CFD Models of Suction Feeding.
The gill cover of fish and pre-metamorphic salamanders has a key role in suction feeding by acting as a one-way valve. It initially closes and avoids an inflow of water through the gill slits, after which it opens to allow outflow of the water that was sucked through the mouth into the expanded buccopharyngeal cavity. However, due to the inability of analytical models (relying on the continuity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 215 Pt 1 شماره
صفحات -
تاریخ انتشار 2012